水看起来透明,是因为它对可见光吸收的少,大部分的可见光可以透过水。
水不是对所有的光都透明。
可见光的范围
光是粒子,也是电磁波,所以光有波长与频率,频率越高,波长越短。
由上图,我们肉眼可见的自然光属于可见光,它只占整个光谱的很小一部分。可见光的波长大约在380~780nm之间,其频率范围大约为4.2×10^14~7.8×10^14Hz。
可见光的光子会毫无阻碍地穿过水吗?
光是由无数个不同频率光的能量子相互叠加的电磁波,每一个能量子都有自己的频率和波长。光子是能量子,同时也是玻色子,尽管光子极小并且没有静止质量,但它有波动的幅度,并且它是带电的。这意味着光子它射入水中之后,不会像中微子那样长驱直入,在电场的作用下它可能跟水分子中的电子相撞。
真的会相撞吗?我们来算算:单个水分子的体积约为3 ×10^-29m³,单个水分子的直径(假设它是个圆球形)约为0.4nm,而水分子间氢键的长大约也是0.4nm。由此可见,对于波长范围在380~780nm的可见光来说,0.4nm的空隙实在是太小了,并且水分子是无序排列并不断振动,因此碰撞几乎不可避免。
上图为水表面分子团簇的电镜渲染图像,像花朵的凸起部分为电子云,其中间的凹槽为氢键。
当光子与水分子相碰时会发生什么?
水分子表面聚集着一团密集的电子云,其中电子会按照自己的能量级别(能级)在它们各自的轨道上出现,我们称这是电子的“基态”。电子的轨道并不是固定不变的,当分子受热或被光照射时,那些被照射到的电子因为受到光子的撞击而与光子发生耦合(激发态),耦合后的电子获得相应光能量子的能量后会跃迁到更高一层能级的轨道上去。
与此同时,那些到了高一级轨道的耦合电子并不稳定,它们有回落(回落也是跃迁)到原来轨道的趋势,在回落的同时,电子会向外释放一个光子,这个光子虽然与前一个耦合的光子不同,但它所携带的信息几乎与前一个光子一样。光就是以这样接力的方式不断在水中接力传输,直到重新被射出水。
我们看到射出水的光已经不是之前射入水面的光了,一个直观的证据是,可见光会因为不同颜色光子所携带能量的不同,它们在水中的折射率也会不同,最终出射的角度也就区别,有时候你可以看到赤澄黄绿青蓝紫七色光被区分了开来。
所有的光子都会被传递吗?
并非如此。当一束阳光照射到水面,大约会有近10%的光子会被水面反射,剩余的有相当多光子会被水吸收。水的反射机制很复杂,并且与本文主题关联性不大,故在此略过不谈。
我们先来看看水对光的吸收能谱: