水是生命之源,氧气是生命之本,但地球生命在进化历程中经历的两次大灭绝,都与氧气的快速增加有关,称为“大氧化”事件!这两次“大氧化”事件,一次是蓝藻的快速进化导致的,另一次是植被的繁茂导致的。
现在,生物学家得到的结论是:生物个体的演化速度越快,生态不稳定性越高,越不允许更高级智能体的形成。稳定智能体之间有规则的相互作用才能形成更高级的智能体,复杂的高等生物的DNA在保障整体稳定的基础上进行的差异性才能带来进化。现在地球生物之所以稳定进化到出现人类这样高级的智慧生命体,一定是生态协调的结果。
数字孪生看似是Michael Grieves博士聪明大脑中的灵光一现,但其实该概念的出现是数字化技术发展的必然事件。数字化技术发展到现在,确实需要数字孪生体这样一个系统化的概念来协调其间的关系和进化规则。否则,任其各自发展,最终也许会发生类似“大氧化”事件。所以,数字孪生是数字化发展的理想形态。
核心技术是生命之源
我们在《数字孪生体的进化规律》一文中,提出数字孪生生命体的生长发育将经历数化、互动、先知、先觉和共智等几个成熟度过程,各成熟度分别有各自最核心的技术。其核心层的关键技术为数字线程,第一层关键技术包括建模、仿真、物联网,大数据(或AI),第二层关键技术包括云计算、超现实(XR:VR/AR/MR)、MBSE、区块链等。这些关键技术构成了数字孪生体的生命之源,如图1和表1所示。

图1.数字孪生体关键技术
表1. 数字孪生体关键技术

除了以上关键技术,不同领域或场景(譬如制造、产业、城市或战场)的数字孪生体,还有更多不同的技术(图2)。

图2.数字孪生体在不同场景下的技术
核心技术1:数字化建模
建模的目的是对物理世界进行模型化。数字建模提供了数字孪生体的躯体,是数字孪生体的第一个重要器官。
数字模型是物理对象的数字化表达,这个过程需要将物理对象表达为计算机所能识别的模型,在软件中建立物理对象的结构元素和时空关系,不涉及物理机理和运行数据,就像我们给正在雕塑的人体打造一个躯体。这也当然是数字孪生体的基本要素,毕竟,既然称为“体”,那这样一个直观的躯体是必须的。
我们通常使用三维实体来建立物理对象的结构形状和位置关系,用系统(一维)建模工具来描述物理对象的行为模式。建模工具通常包括譬如CAD软件、3D动画软件、BIM(Building Information Modeling,建筑信息模型)系统、CIM(City Information Modeling,城市信息模型)系统或基于SysML(系统建模语言)的系统建模工具。建立的模型可以是设备、厂房、人群、运输系统、交通、电网、城市、军事战场、战斗群体系等,如图3所示。不过这样的躯体是一个没有神经、没有思想、与世界隔离、无生命的躯体。

图3.数字孪生体的数字模型
核心技术2:模拟仿真
从技术角度看,建模和仿真是一对伴生体:建模过程是我们对物理世界或问题的理解,仿真是验证和确认这种理解的正确性和有效性。
仿真是将包含了确定性规律和完整机理的模型转化成软件的方式来模拟物理世界的一种技术。只要模型正确,并拥有了完整的输入信息和环境数据,就可以基本正确地反映物理世界的特性和参数(图4)。