![](http://imgq8.q578.com/ef/0825/5f2fa2da7766ce77.jpg)
图2 (a)基于皱褶石墨烯的选择性发射;(b,c)褶皱节距的变化可利用太阳辐射和大气窗口来辐射冷却(10 μm)和加热(290nm)。
(三)电极材料
目前,小型化、自动化、以功能为中心的设备的快速发展,使星际任务和近地空间探索的实现更近一步。先进的纳米结构材料的引入促进了全球智能多样化的平台在电力、仪器和通信方面取得进步。然而,仍然缺乏高效可靠的推力系统,能够在长期部署期间支持小型卫星和立方体卫星的精确机动。此外,航空和空间系统需要可靠的电力生产、存储和传输,无论是短期还是长期活动。现有的能源系统正在被纳米材料创新所取代或补充。以石墨烯为基础的更好的工程纳米材料正在不断改进。
MARKANDAN等使用氧化铝增韧氧化锆(ATZ)作为结构材料制造了一个微型推进器,氧化钇稳定氧化锆-石墨烯(YSZ-Gr)作为电极材料。YSZ-石墨烯不仅可以作为电解分解硝酸羟铵溶液的电极,还可以起到阻尼作用。这种微型推进器作为主推进系统具有潜在的应用,可用于卫星星座编队飞行中的快速轨道转移。离子推进器阴极(如图3(a)所示)的关键挑战在于减少或完全消除阴极的推进剂消耗,显著提高阴极的使用寿命,以及减少白炽部分的热损失。通过使用纳米多孔材料、纳米管和石墨烯,可以确保减少气体消耗。这个问题的最佳解决方案是通过使用高发射材料和表面结构完全消除通过阴极的气体通量。垂直排列的石墨烯薄片显著提高推进器效率的,作为无推进剂体系下的良好候选者而备受关注,如图3(b)所示。
![](http://imgq8.q578.com/ef/0825/2380ee9351a6d573.jpg)
图3 (a)常用的热发射阴极示意图;(b)纳米多孔材料,垂直排列的石墨烯薄片直接生长在纳米多孔氧化铝上(比例尺:200nm)。
(四)光帆材料
基于石墨烯的轻型帆的推进系统因其灵活性和无需携带燃料这一特性而成为行星际和星际任务的候选技术。轻型航行也是唯一现存的空间推进技术,可以让我们在人类的一生中访问其他星系。为此举办的蜻蜓计划竞赛,就旨在评估激光驱动的光帆星际探测器发送到另一个恒星系统的可行性。这种大规模光操纵石墨烯光帆对实现星际探索和直接空间运输是具有深远意义的。如图4(a)所示,ZHANG等使用大块石墨烯泡沫在宏观尺度上观察到其直接光推进。这种三维石墨烯材料的新形态,使其不仅能够吸收不同波长的光,而且可以使用瓦级的激光,甚至阳光,按照一种新颖的光致电子喷射机制,直接推进到亚米尺度。如图4(b)所示,GAUDENZI与其合作伙伴制作了由铜网格支撑的石墨烯微膜二维帆叶,并在微重力环境下测试了光诱导位移。提出的材料设计消除了帆所需的光学和机械性能,从而大大降低了帆的总质量,并为利用石墨烯机械强度的高反射2D帆打开了大门。此外,PERAKIS等设计了石墨烯作为夹层的低密度和高反射率的三明治轻帆,达到指定加速度比目前最先进的镀铝的聚酯薄膜太阳帆材料性能更好。
![](http://imgq8.q578.com/ef/0825/fa9390c43184f03c.jpg)