OK~,上述内容讲的是操作系统高速缓冲区的知识,在CPU中利用局部性原理,提前将数据从内存先放入L1/L2/L3三级缓冲区中,主要是为了减小CPU寄存器与内存之间的性能差异。
OK~,由于CPU寄存器和内存之间的性能差异太大,所以逐个读数据的形式会导致CPU工作期间的大量时间会处于等待数据状态,所以利用局部性原理将数据“预读”到高速区。而对于MySQL而言,亦是同理,存储数据的磁盘和内存之间的性能差异也是巨大的,因为MySQL也会利用局部性原理,提前“预读”数据。
这是什么意思呢?其实就是指MySQL一次磁盘IO不仅仅只会读取一条表数据,而是会读取多条数据,那到底读多少条数据呢?在InnoDB引擎中,一次默认会读取16KB数据到内存。
1.1.2、全表扫描过程
回到前面分析全表扫描的阶段,由于MySQL中会使用局部性原理的思想,所以对于给出的用户表数据而言,可能只需发生一次磁盘IO就能将前五条数据全部读到内存,然后会在内存中对本次读取的数据逐条判断,看一下每条数据的姓名字段是否为「黑熊」:
- 如果发现不符合SQL条件的行数据,则会将当前这条数据放弃,同时在本次SQL执行过程中会排除掉这条数据,不会对其进行二次读取。
- 如果发现当前的数据符合SQL条件要求,则会将当前数据写入到结果集中,然后继续判断其他数据。
当本次磁盘IO读取到的所有数据全部筛选完成后,紧接着会看一下表中是否还有其他数据,如果还有则继续触发磁盘IO检索数据,如果没有则将内存中的结果集返回。
有人或许会疑惑,为什么这里已经读到了符合条件的数据,还需要继续发生磁盘IO呢?因为表中的字段没有建立唯一索引或唯一约束,因此MySQL不确定是否还有其他同名的数据,所以需要将整个表全部扫描一遍,才能得到最终结论。
好的,到这里就将MySQL全表扫描的过程讲明白了,紧着来看看全表扫描有什么问题呢?
其实按目前的情况来看,似乎不会有太大的问题,因此表中数据不多,一次磁盘IO几乎就能读完。但思考一下,如果当表的数据量变为百万级别、千万级别呢?假设表中一条数据大小为512Bit,一次磁盘IO也只能读32条,假设表中有320w条数据,一次全表就有可能会触发10W次磁盘IO,每次都需要在硬件上让那个盘面转啊转,其过程的开销可想而知.....
因此建立索引的原因就在于此处,为了避免查询时走全表扫描,因此全表扫描的开销会随着数据量增长而越来越大。
1.2、索引为何不选择二叉树?
数据结构与算法,这门学科从诞生到现在,自始至终都让人难以理解,但国外有一个比较厉害的程序员,为了帮助他人更好的理解数据结构,自己搭建了一个数据结构的动画演示平台,里面提供了非常多丰富的数据结构类型,我们在其中能以动画的形式观测数据结构的变化。
回归话题本身,全表扫描由于走的是线性查询,因此数据越多,开销越大,此时先来看看二叉搜索树。
Binary Search Tree二叉搜索树是遵守二分搜索法实现的一种数据结构,咱们先来看看这种数据结构为何不适合用来做索引结构呢?

上图是我提前构建的二叉树,其中存在6个节点,按咱们前面给出的案例,「黑熊」这条数据位于表的第五行,那假设以二叉树作为索引结构,想要定位到第五行数据,需要经过几次磁盘IO呢?来看动图演示效果:

从动画中可以明显看到,想要查到第五条数据,需要经过五次查询,由于树结构在磁盘中存储的位置也不连续,因此无法利用局部性原理读取后续的节点,所以最终需要发生五次磁盘IO才能读取到数据。
- 二叉树不适合作为索引结构的原因:
- ①如果索引的字段值是按顺序增长的,二叉树会转变为链表结构。