量子力学的最重要资源
纠缠的量子态给如何存储、传输和处理信息带来了新的可能。
如果纠缠对中的粒子朝相反的方向行进,其中一个粒子以某种方式与第三个粒子相遇而使得它们产生了纠缠,这时有趣的事情发生了。它们会进入一种新的共享状态。第三个粒子失去了其特征,但它原来的性质现在已经转移到了原来纠缠对中现在“落单”的那个粒子上。将未知量子态从一个粒子转移到另一粒子的这种方式被称作“量子隐形传态”。这类实验由安东·塞林格及其同事在 1997 年首次完成。
值得注意的是,量子隐形传态是将量子信息从一个系统转移到另一系统而没有任何损失的唯一方法。想要测量出一个量子系统的所有性质,然后将其传输给接收者来重建整个系统,这是绝对不可能的。这是因为一个量子系统可以同时包含每个性质的多个“版本”,每个版本在测量中都有一定的出现概率。而一旦执行了测量,就只剩下一个版本,即被测量仪器读取的那个。其他的已经消失,不再可能知道它们的任何事情。然而,完全未知的量子性质可以通过量子隐形传态来传输,它将完好无损地出现在另一个粒子上,其代价是在原粒子中消失殆尽。
一旦这在实验中被证实,下一步就是使用两个纠缠粒子对。如果每个粒子对中的一个粒子以一种特殊的方式被聚集到一起,那么每个粒子对中未受扰动的那个粒子就会纠缠在一起,尽管它们从未相互接触过。这种纠缠交换在 1998 年由安东·塞林格的研究小组首次证实。
从未相遇的纠缠粒子
两对纠缠粒子从不同的源发射出来。每对粒子中的一个粒子(图中的 2 和 3)以一种特殊的方式被聚集到一起、发生纠缠。那么,另外两个粒子(图中的 1 和 4)也被纠缠起来。通过这种方式,两个从未接触过的粒子可以纠缠在一起。
光子(即光的粒子)的纠缠对,可以通过光纤往相反的方向发送,并在量子网络中起到信号作用。两对光子对之间的纠缠使得扩展网络节点之间的距离成为可能。光子通过光纤发送的距离是有限制的,因为光子会被吸收或失去其性质。普通的光信号可以沿途被放大,但这种方法不适用于纠缠对——放大器必须捕获并测量光,这将破坏纠缠。然而,纠缠交换意味着可以将原始状态发送得更远,从而实现比其他方式更长的传输距离。
从佯谬到不等式
这一进展基于多年的发展。它始于令人惊愕的洞察力——量子力学允许一个单一量子系统被分割成彼此分离的各部分,但它们仍然作为一个整体来行动。
这违背了关于因果和现实本质的所有通常想法。一个事件怎么可能被发生在另一地方的事件影响呢——如果没有接受到来自那里的某种形式的信号?信号的传播速度不可能超过光速——但在量子力学中,一个扩展系统的不同部分似乎完全没有必要通过信号来连接。