量子态隐形传输则是基于量子纠缠态的分发与量子联合测量实现量子态信息的直接传输,在量子信息的转移过程中不移动信息载体本身。同经典通信相类似,远距离量子通信会出现纠缠减弱。因此,量子态隐形传输还需要建立量子中继以保证量子通信通畅。
美国最早开始了量子通信的研究,20世纪末,美国政府就将量子信息列为“保持国家竞争力”计划的重点支持课题,隶属于政府的美国国家标准与技术研究所(NIST)将量子信息作为三个重点研究方向之一。在政府的支持下,美国量子通信产业化的发展也较为迅速。
1989年,IBM公司在实验室中以10bps的传输速率成功实现了世界上第一个量子信息传输实验,虽然传输距离只有短短的32m,但却拉开了量子通信实验的序幕。2003年,美国国防部高级研究计划署在BBN实验室、哈佛大学和波士顿大学之间建立了DAPRA量子通信网络,这也是世界上首个量子密码通信网络。
该网络最初由6个量子密钥分发(QKD)节点,后扩充至10个,最远通信距离达到29km。2006年,Los Alamos 国家实验室又基于诱骗态方案实现了安全传输距离达107km的光纤量子通信实验。2009年,美国政府发布的信息科学白皮书中明确要求,各科研机构协作开展量子信息技术研究。
2016年4月,美国国家科学基金会(NSF)将“量子跃迁-下一代量子革命”列为六大科研前沿之一。2016年8月,NSF对6个跨学科研究团队给予了 1200万美元资助,用于进一步推动量子安全通信技术的发展。2016年9月,NSF发布2017年研究与创新新兴前沿项目(EFRI)的招标文件,着重解决基础工程挑战,开发芯片级的设备和系统,为实用化的量子存储和中继器的研制做准备,目标是实现可扩展的广域量子通信和应用。
过令人欣慰的是,今天中国在量子通信领域已经毫无疑问地达到了世界顶尖水平,尤以中科大的潘建伟、郭光灿等小组最为有名。2016年,中国发射了世界首颗量子通信卫星“墨子号”,成为轰动一时的大新闻。“墨子号”首次实现了卫星与地面之间量子通信连接。
不过,发射卫星只是一个起点,在“宏伟量子大厦”中,量子“京沪干线”随后也飞速搭建了起来。2017年世界首条量子保密通信干线——“京沪干线”正式开通,量子“京沪干线”总长2000多千米,有望在2030年左右,能建成全球化的广域量子通信网络,并在量子计算领域有所作为。
可以说,目前,在市场应用不断突破下,天地一体的广域量子网络已经指日可待。
量子通信是经典通信代替吗?
目前,随着量子通信的发展与进步,保密措施变得越来越复杂、越来越可靠。人类也在致力于将量子保密通信向更远距离和更大规模的广域网络发展。
比如,量子通信就对军事、国防、金融等领域的信息安全有着重大的潜在应用价值和发展前景。在国防和军事领域,量子通信能够应用于通信密钥生成与分发系统,向未来战场覆盖区域内任意两个用户分发量子密钥,构成作战区域内机动的安全军事通信网络。量子通信不仅可用于军事、国防等领域的国家级保密通信,还可用于涉及秘密数据、票据的政府、电信、证券、保险、银行、工商、地税、财政等领域和部门。
此外,量子通信还能够应用于信息对抗,改进军用光网信息传输保密性,提高信息保护和信息对抗能力;并能够应用于深海安全通信,为远洋深海安全通信开辟了崭新途径;利用量子隐形传态以及量子通信绝对安全性、超大信道容量、超高通信速率、远距离传输和信息高效率等特点,将建立满足军事特殊需求的军事信息网络,为国防和军事赢得先机。
而在国民经济领域,量子通信则可用于金融机构的隐匿通信等工程以及对电网、煤气管网和自来水管网等重要基础设施的监视和通信保障。