比如,在时间测量方面,按照原子跃迁能级谱线对应的频段,科学家们发明了原子钟。玻尔的原子理论认为,原子从一个“能量态”跃迁至低的“能量态”时便会释放电磁波,这种电磁波特征频率是不连续的。1967年,国际计量大会对“秒”做出了重新定义:铯原子中电子能级跃迁周期的9192631770倍为1秒。这是量子理论在测量问题上的第一个重大贡献。
当前,我们熟悉的北斗导航卫星,就是应用原子钟实现了精准导航。从100万年误差1秒,到500万年误差1秒,再到37亿年误差1秒随着量子精密测量技术的快速发展,基于量子精密测量的陀螺及惯性导航系统具有高精度、小体积、低成本等优势,将对无缝定位导航领域提供颠覆性新技术。在这场追求更高精度的科技竞赛中,世界各国科学家研发的原子钟还在不断刷新着科学的极限。
另外,基于量子相干性的测量技术,即利用量子的物质波特性,通过干涉法进行外部物理量的测量,科学家们得以开发出具有高精度的陀螺仪、重力仪、重力梯度仪等。其中,基于原子干涉技术路线的量子重力仪则是目前发展最为成熟的。它可以和重力梯度仪一同使用,进行探测地下结构、车辆检查、隧道检测、地球科学研究,量子重力仪的使用有望降低土木工程和地质调查的成本,并能够作为一种基础物理应用检测的可能替代方法。
目前,美国、法国等少数几个国家已解决了冷原子干涉系统的长期稳定性和集成问题,正着力于攻克高动态范围和微小型化等应用难题,产品进入实用化阶段。中国的华中科技大学也已经于2021年将研制的实用化高精度铷原子绝对重力仪交付中国地震局地震研究所,这是我国首台为行业部门研制的量子重力仪,同时也意味着中国量子重力仪研究进入国际第一梯队。
量子测量在健康领域也展现出极大的发展潜力。原子磁力计目前实用化方向主要就是生物医学领域,比如,神经功能研究,并为了解和治疗阿尔茨海默病、帕金森病等提供了更全面的支撑。
当前,医院使用的脑磁图(MEG)诊断方式是通过SQUID获得磁场数据,设备占地面积大、价格昂贵、需液氦制冷、维护成本高,不利于大规模推广应用。而无自旋交换弛豫(SERF)磁力计、光泵磁力计(OPM)则实现了磁力测量设备的小型化。SERF原子磁力计具有对低频信号敏感、室温运行、功耗低、小型化、可穿戴等优点,分辨率也与SQUID接近或超越,适合大规模推广应用。至于OPM磁力计,2021年,诺丁汉大学与Magnetic Shields公司合作设立的Cerca Magnetics公司,就推出了新型的可穿戴式脑磁图扫描仪(OPM+MEG)。
不仅如此,由于量子测量极高的灵敏度,在保持目标检测能力不变的前提下,量子测量所需的发射功率更低。这样有利于设备的小型化,在载荷有限的平台上装配具有较大优势。如果采用量子元器件替换普通电子元件,测量设备的体积可以减少一半甚至更多。
另外,相比经典测量,基于量子态的测量表征了量子的微观特性,可以提取更多维度的目标信息。除了宏观的空间、时间和频域特征外,量子测量可利用的信息资源更为丰富,如光子的偏振、纠缠等,这些信息更是提升目标测量的维度,增强了目标识别能力。
精度的跃升
自古即今,人类已经走过来几千年的计量史。人类的先祖为了将大自然里“不可数”的事物转化为“可数”,发明了“单位”,这个转化的过程就是“测量”。后来,人类进入了农耕文明,在农业社会空前的文明规模下,人类将原始单位发展成了完整的“度量衡”制度,这三者构成了文明社会的根基。当然,古代计量制度最大的缺陷就是不精确。
以时间的测量为例,时间是人类能够接触到的物理量中的一个很难测准的量,但与此同时,地球自转造成的昼夜变化,又是对全世界人类来说一个颇为理想的平等度量。所以,时间可以作为所有测量的基准——时间可以导出长度,长度导出质量,长度和质量再导出万千世界的所有单位。