此次唐红、李雄耀团队的研究便围绕着月壤中的太阳风成因水展开。研究团队运用红外光谱和纳米离子探针对嫦娥五号月壤样品开展深入分析,其结果显示嫦娥五号月壤样品的矿物表层中存在大量的太阳风成因水,估算其水含量至少为170ppm(1ppm为百万分之一),这一数值显著高于月球内部的水含量;并且分析结果还显示,月壤中水含量的差异主要归因于测试深度的差异,矿物中的水主要分布在极表层内,并且其氢同位素比值与太阳风的十分接近,主要以羟基的形式存在。这些证据全部有力证实了,太阳风质子注入就是嫦娥五号采样地区月壤中水的主要来源。
虽然整个月球表面都有水的存在,但并不意味着月球上每个区域月壤的水含量都相同。一部分的太阳风成因水会在太阳的照射下“蒸发”,还有一部分则会迁移并沉降到温度极低的两极永久阴影区,经过漫长的地质活动后形成大量水冰。而此次嫦娥五号月壤样品的研究结果也显示,由于月表存在翻腾作用,月壤颗粒暴露在太阳风中的时间不同,导致了矿物中注入的太阳风质子总量不同,进而也会致使不同区域月壤中的太阳风成因水含量不同。通过对嫦娥五号采样地区月壤成熟度的测定,结合此前遥感探测发现的月表中纬度地区太阳风成因水与月壤成熟度正相关这一现象,研究团队进一步提出,在与嫦娥五号采样区有着相似月壤成熟度的月表中纬度地区,其月壤中的太阳风成因水含量应大致相同。而在月壤成熟度更高的如风暴洋西北侧高地,其月壤中的水含量可能更高。这一看法不仅为未来月表水资源利用提供了重要依据,也为探索太阳系内其他无大气天体,如水星、小行星等表层土壤中的太阳风成因水的形成机制和分布规律提供了重要参考。
此外,嫦娥五号月壤样品中能够发现水,很大程度上得益于其采样地点的独特。嫦娥五号的月壤样品采样地点位于月球最大的月海——风暴洋的东北部,这里以前从未有人踏足,与以往别国任务的采样点相距甚远。而同位素定年结果更是表明,该区域月壤样品的年龄约为20亿年,是目前获得的最年轻的月壤样品。更为重要的是,嫦娥五号月壤样品中的主要组成物质是辉石、斜长石和橄榄石,而这几种矿物恰恰都是探究太阳风成因水储量的最佳载体。
推演月球的来龙去脉
作为地球唯一的天然行星,月球地质活动的历史一直是科学家关注的重点。通过对嫦娥五号月壤样品的深入研究,许多此前关于月球地质活动模棱两可的问题,如今有了更为清晰的答案。
中国科学院紫金山天文台研究员徐伟彪及其行星化学科研团队联合南京地质古生物研究所,对月球样品进行研究后发现,样品中有极高含量的高钛玄武岩。研究团队据此推测,嫦娥五号月球着陆区或曾有多次火山喷发。
徐伟彪表示,在目前所有收集到的月球陨石中基本没有发现高钛玄武岩,这是因为钛铁矿处于月球浅层,一般分布在月壳以下、月幔以上的区域,而玄武岩是月球深处月幔物质经高温熔融产生的岩浆喷发到月表,冷却后凝固而成的一种岩石。因此在正常情况下,玄武岩中的钛含量应该很低。徐伟彪进一步解释说,之所以会出现高钛玄武岩,可能是由于钛铁矿比重较重,造成了月幔上重下轻的重力不稳定结构,钛铁矿经过翻转下沉到深部月幔,经过熔融后,与岩浆一起喷发出来,冷却后被“封锁”在了玄武岩中。
研究团队结合此前在嫦娥五号月壤样品中已经发现的低钛、中钛月海玄武岩大胆推测,嫦娥五号着陆区历史上至少发生过3次火山喷发活动。徐伟彪认为,这一结论将为研究月球演化提供重要线索,也有望解答月幔源区不同物质成分来源、火山岩浆形成的能量来源和月球晚期火山活动的精细时空分布规律等多项重要问题。
如果月球上曾经有过如此密集的火山喷发活动,那它们又是在何时停止的?嫦娥五号月壤样品同样给出了刷新过去认知的答案。在此之前,美国和苏联的月壤样本,以及地球上的月球陨石研究都表明,月球的岩浆活动至少持续到大约28亿到30亿年前。
由中国科学院地质与地球物理研究所和国家天文台主导,多家研究机构团队联合对嫦娥五号月壤样品展开研究。他们利用超高空间分辨率铀—铅定年技术,对嫦娥五号月壤样品玄武岩岩屑中50余颗富铀矿物进行分析,确定其形成年龄约为20.3亿年,这意味着月球直到20亿年前仍存在岩浆活动,将以往月球样品限定的岩浆活动停止时间向后推迟了约8亿—9亿年。