从疫情看医药研发及临床决策数字化变革的迫切性
从长远的角度来看,这个平台首先可以给药物研发企业带来成本的降低和提高研发的效率,从而推动它的去中心化以及混合型临床实验现代化的进程。其次,从整个制药产业链来看,数据科学和分析技术的进步,,能力与需求的扩大交相作用下,会共同推进药物研发向一个变革性方向的转变。此外,监管层面试图通过引入更多的技术以加快研发效率的趋势也愈加明显。
当然整个数据分析在医药产业链当中承担了很多关键性的任务,比如,数据的采集汇集、合并、数据标准化,到进行三期临床试验,再到后期真实世界的研究等等,数据分析都承担了非常关键性的作用。所以数据分析是向变革性药物研发方向转化的一个关键,而且我们未来会面对更多的数据形式、更大的数据量,药物研发企业需要拥有提前布局的能力。
虽然看似挑战重重,但这却丝毫不影响药物研发企业寻找到可靠的解决方案。比如,在海量原生数据为支撑的情况下,SAS的生命科学数据分析平台可以帮助简化临床试验数据的安全性评审,缩短昂贵而繁琐的药物开发过程,为制药公司的临床研究提供分析基础,嵌入式分析工具,支持数据标准以及可选的集成分析应用程序。
在与法国第二大药物集团Sanofi-Synthelabo 公司的合作过程中,SAS就体现了这样的优势。在SAS的帮助下,该公司得以对在临床研究过程中搜集到所有关键数据,并对他们进行有效分析,从而减少了研发阶段所需时间,为新产品投入市场和增加市场销售时间提供了可能。
同样,位处美国新泽西州的Daiichi Sankyo Pharma Development公司也采用了SAS的药品开发解决方案。借助SAS 9智能平台的先进功能,该公司消除了组织之间共享数据和应用的障碍,减少了数据管理人员解决数据差异浪费的时间,使他们有更多的时间与统计人员和医生协作,加快评估和决策时的数据访问速度。
除了以上优势外,SAS还能有效地转换、分析和报告临床试验数据,让医护人员通过强大的药物分析,更快地开发新疗法。在面对世界三大癌症之一结肠癌的手术时,需要医务人员首先对癌症的性质和切除面积做出准确判断,一旦切除面积过大就为患者带来生命危险。传统的方式是通过CT和化学药物的治疗,先判断肿瘤性质和缩小肿瘤体,在这一过程将花费医生大量的时间去标注这些成叠的CT片。而在荷兰阿姆斯特丹大学与SAS的合作中,前者通过使用集成了AI的SAS Viya,把这些CT片从2D变成3D,并通过API接口调出相关函数,就可以测出肿瘤的体积。从开始扫描到得出最终数据,整个过程仅需要20分钟,大大提升了手术的准确率和效率。
数据之力夯实合规基础
如果说数据技术是创新药物研发的动力,那么合规就是创新药物研发的基础。以本次新冠疫苗研发为例,就有业内人士透露,我国新冠核酸疫苗(mRNA)研发进度慢于国外的主要因素,并非研发实力不足,而是由于mRNA疫苗此前在国内没有获批的先例。
在以前,国内药基本以仿制为主,创新原研药占比非常低。根据2018年的数据显示,我国医药市场规模排名世界第二,但创新药数目只占全球6%,由此可见,我国的创新药市场拥有着巨大的发展潜力。近年来,随着我国生物医药科研技术的发展和药品审批制度的改革,创新医药迎来了黄金发展期。根据中国国家药品监督管理局的《2020年药品审评报告》中的数据显示,2020年药审中心全年受理新药(NDA)上市申请54件(38个品种),较2019年增长100%。
药品创新能力增强,药品审评的能力与政策也要持续优化,才能推动我国药品创新环境整体发展。在十四五规划和健康中国2030规划中,我国就明确了在加强专利药等的创新建设能力之外,还要在未来五年内,持续深化推动创新药上市优先审评,提升医疗医药向更高质量更具价值的方向发展。
在美国,新药申请许可的过程同样十分严苛。在进行新药申请或生物制品许可申请时,制药公司会将一系列药理实验数据提交给美国食品药品监督管理局(FDA),以证明其新产品的安全有效性。然后,后者将会审核提交的实验数据和药品生产质量管理规范(GMP)等相关数据,为符合标准的产品给予同意意见。作为从事药品管理的最高执法机关,FDA要面临海量的数据处理需求,要提高判断的准确率和效率,当然也少不了要借助数据之力