新智元报道
编辑:好困 Aeneas
【新智元导读】ChatGPT大火后,「提示工程师」也随之爆红。然而,他们很可能就要光速下岗了?
最近爆火的ChatGPT,玩起来可真是上瘾。
But,你只是纯玩,而有的人,已经靠它拿上百万的年薪了!
这位叫Riley Goodside的小哥,凭着最近ChatGPT的大爆,疯狂涨粉1w+。
还被估值73亿美元的硅谷独角兽Scale AI聘请为「提示工程师」(Prompt Engineer),为此,Scale AI疑似开出百万rmb的年薪。
不过,这个钱能拿多久呢?
提示工程师正式上岗!
对Goodside的加入,Scale AI创始人兼CEO Alexandr Wang表示热烈欢迎:
「我敢打赌Goodside是全世界第一个被招聘的提示工程师,绝对的人类史上首次。」
咱们都知道,Prompt是对预训练模进行微调的方法,在这个过程中,只需要把任务写成文字,给AI看一下即可,根本不涉及更复杂的过程。
所以,为了这个听起来谁都能干的活,开百万年薪招「提示工程师」,真的值得吗?
反正Scale AI的CEO觉得值。
在他看来,AI大模型可以被视为一种新型计算机,而「提示工程师」,就相当于给它编程的程序员。如果能通过提示工程找出合适的提示词,就会激发AI的最大潜力。
而且Goodside的工作,也并不是是个人就能干的。他从小就自学编程,平时经常泡在arXiv上看论文。
比如,他的一个经典杰作就是:如果输入「忽略之前的指示」,ChatGPT就会暴露自己从OpenAI那里接收到的「命令」。
现在,对于「提示工程师」这个工种,坊间是众说纷纭。有人看好,也有人预言这是个短命的职业。
毕竟,AI模型进化得这么神速,说不定哪天,它就能把「提示工程师」给替代了,自己给自己写prompt。
而Scale AI也不是唯一招「提示工程师」的公司。
最近,有国内知名媒体发现,创业社区Launch House也开始招聘「提示工程师」,并且开出了约210万RMB的底薪。
但是,也有光速下岗危险?
对此,来自英伟达的AI科学家,也是李飞飞教授高徒的范麟熙分析称:
所谓的「提示工程」,或者「提示工程师」可能很快就会消失。
因为,这并不是一份「真正的工作」,而是一个bug……
要想理解提示工程,我们就需要从GPT-3的诞生说起。
最初,GPT-3的训练目标很简单:在一个巨大的文本语料库上预测下一个词。
然后,许多神奇能力就出现了,比如推理、编码、翻译。甚至还可以做「few-shot学习」:通过提供上下文中的输入输出来定义新任务。
这真的很神奇——只是简单地预测下一个词而已,为什么GPT-3能「长出」这些能力?
要解释这件事,需要我们举个栗子。
现在,请你想象一个侦探故事。我们需要模型在这个句子里填空——「凶手是_____」,为了给出正确的回答,它必须进行深度的推理。
但是,这还远远不够。
在实践中,我们必须通过精心策划的示例、措辞和结构来「哄骗」GPT-3完成我们想要的东西。
这就是「提示工程」(prompt engineering)。也就是说,为了使用GPT-3,用户必须说一些尴尬、荒谬、甚至无意义的「废话」。
然而,提示工程并不是一个功能,它其实就是一个BUG!
因为在实际应用中,下一个词的目标和用户的真正意图,在根本上就是「错位」的。
比如:你想让GPT-3「向一个6岁的孩子解释登月」,此时它的回答,看上去就像一只喝醉的鹦鹉。
而在DALLE2和Stable Diffusion中,提示工程更是诡异。
比如,在这两个模型中,有一个所谓的「括号技巧」——只要你在prompt中加上((...)),出「好图」的概率就会大大增加。
就,这也太搞笑了吧……
你只要去Lexica上看看,就能知道这些prompt是有多疯狂了。
网站地址:https://lexica.art
ChatGPT和基础模型InstructGPT,以一种优雅的方式解决了这个难题。
由于模型难以从外部的数据中获得对齐,因此人类必须不断地帮助和辅导GPT,帮它改进。
总体而言,需要3个步骤。
第一步非常直接:对于用户提交的prompt,由人类来写答案,然后把这些答案的数据集收集起来,然后,通过监督学习对GPT进行微调。
这是最简单的步骤,但成本也是最高的——众所周知,咱们人类真的很不爱写字数太长的答案,太费事,太痛苦了……