1、两相流测量分析技术在CSBG研究中的应用
气液两相流研究中气相的统计学和动力学测量对两相流的建模、流动阻力、传热传质等问题有着重要的影响,准确地测量气泡群的气泡尺寸、形状、位置、动力学速度等参数,可以为分析两相流的关键参数如气泡动力学轨迹、含气率分布、滑移速度比等提供支持。其中,气泡大小的参数对气泡流具有重要意义。气泡尺寸是微气泡湍流减阻的关键参数,同样受限于产生不同尺寸气泡的困难,微气泡湍流减阻的尺寸效应需要进一步研究。
连续谱气泡发生器(Continuous spectrum bubble generator, CSBG)是上海交通大学团队提出的,一种能够产生尺寸连续可控气泡的气泡发生器,引入伺服电机和旋转叶轮,通过控制叶轮转速调整机械剪切强度,使产生的气泡尺寸达到预期值。其最大特点是能在相同的气液流动工况(气相、液相流量不变)的条件下获得设定尺寸的气泡,可用于气液两相流的各个研究领域中。
上海交通大学团队在研究连续谱气泡发生器原理时,开展了可视化实验研究,通过千眼狼高速摄像机结合两相流测量分析技术分析了该发生器的宏观特性,验证了连续谱气泡发生器(CSBG)的可靠性,相应研究成果发表在了国际知名期刊《Chemical Engineering Science》中,引用格式:Chen, W., Huang, G., Hu, Y., Yin, J., & Wang, D. (2022). Experimental study on Continuous Spectrum Bubble Generator with a new overlapping bubbles image processing technique. Chemical Engineering Science,117613.doi:https://doi.org/10.1016/j.ces.2022.117613》
2、实验过程
1/2.实验方法
上海交通大学团队通过伺服电机控制机械剪切的方法控制生成气泡的尺寸,以实现对气泡尺寸的连续控制。由于控制气泡尺寸的困难,实验研究先预估所需要的气泡尺寸,再通过控制气泡发生器的孔径来生成与所需尺寸相近的气泡,并通过高速摄像机观察、两相流测量分析等方法测量实际气泡尺寸。
图1 实验回路的示意图
图1为CSBG的宏观特性实验研究回路示意图,是由气泡发生器、高速剪切器、可视化测量段、电磁流量计、气体流量控制器、泵和若干阀、管道等部分组成。为验证CSBG的宏观特性,设定发生器的孔洞直径为2mm,在需要更大或更小源气泡的场景中,可以通过增大、缩小孔径实现。高速剪切器内设置了一台切割叶轮,叶轮由伺服电机驱动,其转速可精确控制到 3rpm,实验中通过控制叶轮的转速来改变其切割的强度,以实现对气泡尺寸的控制。实验回路为内径50mm的圆形流道,为最小化折射率对高速成像的影响,可视化测量段外设置了一个矩形水箱作为观察盒。实验的气液两相介质分别为水和空气,液相流量由电磁流量计测量,气相则由压缩机压缩空气后存储在气罐中,并通过气体流量控制器控制进入回路的气相流量。为确保回路中的气液相分离,回路上部设置了一个大水箱,利用重力实现气液相分离,确保实验入口段没有前序气泡的影响。