
q值是在自研算法下调教数值对清晰度的影响

q值是在自研算法下调教数值对美学的影响
通过如上图可以看出,新算法压缩并不会带来很大的画质波动,基本和压缩前对比差异不大。
解码性能对比
要保证用户侧的加载耗时,必须要考虑新的算法在客户端解码的性能,而「按照我们的设计预期用户的解码耗时的增加值」需要小于「由于文件体积的减少带来的耗时」才能保证影响加载耗时变大,我们调研开源的一些图片解码性能,发现业界其他解码器一张图像解码耗时在150MS~250MS 之间,开源实现暂时无法达到要求,于是我们做了一些自行调教:


实验室下:自研解码和开源解码性能对比,耗时越低越好。(单位:ms,其中绿色为自研解码)
经过如上调教,我们基本可以将图片的解码耗时控制在对齐webp的解码耗时时间。
实验设计
秉承科学严谨的原则,我们选择实验验证时,需要充分考虑对照组和实验组变量尽量减少:(veImageX图像压缩访问方式是极简的,只需要将原来的url之后追加一个图像目标模板即可如下表格中隐去了真实的业务信息)
数据论证


实验流量对比
经过线上实验,随机选取了一组流量进入实验过程,经过一段时间运行,我们发现 p-xx-a 的域名带宽和p-xx-b的域名带宽形成显著差异;我们从流量上计算(2.53PB-1.71PB)/2.53PB*100 = 32.4%,因此评判,在严格的和webp对比下,带来至少 30%的带宽节省验证符合预期。
当然,除了自行验证之外,我们也尝试过将线上其他格式(无需区分webp、jpg)与线上自研格式对比,节省比例更优。


验证数据参考
通用的“集智瘦身”
降成本是一个演进过程,在Android 和iOS 双端端原生解决了带宽问题后,在H5端运行,自研算法解码端面临在浏览器兼容性和性能支持的问题。因此我们需要考虑,无需集成客户端SDK的方式能够带来体积的节省,这里我们研发了“集智瘦身”的方式;这个设计初衷是为了解决业务方接入推广难、集成SDK覆盖难等难题,同时还要满足成本节省的目的。
集智瘦身的原理是通过深度学习的方式对传统webp、jpeg甚至png等格式进行瘦身压缩,而不需要集成客户端解码库。
相比于自研编码方式需要集成SDK之外,集智瘦身的接入简单很多,只需要将域名指向到veImageX服务就可以享受降本服务。