杨净 Pine 发自 凹非寺
量子位 | 公众号 QbitAI
刚刚,2022年诺贝尔物理学奖揭晓!
今年的物理学奖颁向量子纠缠的三位科学家,他们分别是阿兰·阿斯佩Alain Aspect,约翰·克劳泽John F. Clauser以及安东·塞林格Anton Zeilinger,以表彰他们用纠缠光子进行实验,证明了贝尔不等式不成立,并以此开创量子信息科学。
换言之,他们成功证明了爱因斯坦是错的。
他们三人将共享1000万瑞典克朗的奖金。值得一提的是,其中塞林格还是潘建伟院士的博士导师。
证明了爱因斯坦是错的
官方评价中提到,他们的实验为当下量子技术革命奠定了基础,真正推动量子信息从理论走向了应用。
这其中最关键的贡献就是用量子纠缠实验,证明了贝尔不等式不成立。
量子纠缠,就是在两个分隔的粒子或者多个粒子,在彼此相互作用时,由于各个粒子所拥有的特性已综合成为整体性质,无法单独描述各个粒子的性质。
最早在1935年,就有人发现了这一现象,其中就包括爱因斯坦。薛定谔也发表了几篇相关论文,还定下了量子纠缠这一术语。
但这种行为被爱因斯坦抨击为违背定域实在论,并讥讽量子纠缠为“鬼魅般的超距作用”(spooky action at a distance)还曾说:“我相信上帝不掷骰子。他表示,量子力学的标准表述不具完备性。
上世纪60年代,贝尔提出论文表明,对于爱因斯坦的定域实在论本身存在矛盾,相反量子力学得到的关联结果要强很多。与此同时,还提出了贝尔不等式,将这种差别定性。
在经典力学中,这个不等式成立,而在量子力学中这个等式就不成立。它可以应用于任何由两个相互纠缠的粒子所组成的量子系统。最常见的范例是纠缠于自旋或偏振的粒子系统。
从那之后,物理学家们做了很多检试贝尔不等式的实验。这其中,约翰克劳泽与他的同事在1972年率先完成了这一实验,他通过将激光照射在特殊晶体上来创建纠缠的光子对,并使用随机数在测量设置之间切换。
图源: Johan Jarnestad/瑞典皇家科学院
不过这个实验仍存在一定的局限性,比如在产生和捕获粒子方面效率低下,测量也是预设的。其他研究者也质疑实验结果是否存在一定的漏洞。
但十年之后,也就是1982年,当时在读博士的阿兰阿斯佩成功弥补了这一局限性,博士论文就是以这一实验为题目,他检测到了更多的光子以及测量结果也很好,最终得到的实验结果符合量子力学的预测。
换言之明确证明,量子力学是正确的,并没有像爱因斯坦所说有隐藏的变量。