在使用 BI 工具的时候,经常遇到的问题是:“不会 SQL 怎么生产加工数据、不会算法可不可以做挖掘分析?”
而专业算法团队在做数据挖掘时,数据分析及可视化也会呈现相对割裂的现象。流程化完成算法建模和数据分析工作,也是一个提效的好办法。
同时,对于专业数仓团队来说,相同主题的数据内容面临“重复建设,使用和管理时相对分散”的问题——究竟有没有办法在一个任务里同时生产,同主题不同内容的数据集?生产的数据集可不可以作为输入重新参与数据建设?
1.DataWind可视化建模能力来了
由火山引擎推出的 BI 平台 DataWind 智能数据洞察,推出了全新进阶功能——可视化建模。
用户可通过可视化拖、拉、连线操作,将复杂的数据加工建模过程简化成清晰易懂的画布流程,各类用户按照所想即所得的思路完成数据生产加工,从而降低数据生产获取的门槛。
画布中支持同时构建多组画布流程,一图实现多数据建模任务的构建,提高数据建设的效率,降低任务管理成本;另外,画布中集成封装了超过 40 种数据清洗、特征工程算子,覆盖初阶到高阶的数据生产能力,无需 Coding 完成复杂的数据能力。
2. 零门槛的 SQL 工具
数据的生产加工是获取及分析数据的第一步。
对于非技术使用者来说,SQL 语法存在一定使用门槛,同时本地文件无法定时更新,导致看板每次都需要手动重做。获取数据所需的技术人力往往需要排期,数据的获取时效及满足度大大打折,因此使用零代码的数据建设工具变得尤为重要。
下方列举两个典型场景,零门槛完成数据处理在工作中是如何应用的。
2.1 【场景1】所想即所得,可视化完成数据处理过程
在产品运营迭代急需不同数据的及时输入反馈时,可以抽象数据的处理过程,通过可视化建模拖拉算子构建数据处理过程。
如要获取按照日期、城市粒度的订单数及订单金额,并获取每日 Top10 消耗金额数据的城市数据,操作如下:
常规数据处理流程 | 可视化建模处理流程 |
相关阅读: |