
史瓦西黑洞、RN黑洞、克尔黑洞、克尔-纽曼黑洞……洞洞有精彩
撰文 | 董唯元
黑洞是科普内容里的常客,诸如“时空奇点”、“事件视界”、“史瓦西半径”,这些名词早已成为爱好者们耳熟能详的概念。可如果说起黑洞内部的多层结构,恐怕许多人会感到莫名其妙。黑洞里面连物质都没有,只有严重扭曲的时空而已,怎么会跟鸡蛋一样有分层结构呢?实际上,黑洞不仅有内部结构而且还很复杂,但我们可以从“0”开始。
0糖0卡0公式
其实,在科普书中经常出现的黑洞,只是黑洞家族里最简单的一种,被称为史瓦西黑洞。这种黑洞既不带电也不自转,只有一个物理属性——质量。在如此高度简化又各向对称的前提下,当然没机会出现太复杂的结构。但真实的宇宙中,天体大多具有自转角动量,而且也多多少少带有一些电荷,黑洞也不应例外。当描述黑洞的理论模型中加入了自转角动量和电荷之后,一些有趣的结构便出现了。

广义相对论下的黑洞分类
我们都知道,史瓦西黑洞的结构就是一个叫作事件视界的球面,包裹着球心处的时空奇点,从视界到奇点这部分区域是不可逆转的单向区,掉进这个区域的任何东西都不可避免地走向奇点。有个噱头感十足的说法:在这个单向区内,时间变成了空间,空间变成了时间。至于这句话具体该如何理解,我们稍后再谈。
现在我们让黑洞携带上电荷,即RN黑洞,它有内外两层视界,单向区只存在于两层视界之间,黑洞所带的电荷越多,这个球壳状的单向区就越薄。而在内视界以内的区域则又回到普通时空的样子,不存在时间维与空间维互换的情形,黑洞中心的奇点就躺在这片普通时空区域中。

如果黑洞有自转,即克尔黑洞,其视界不再是匀称的球面,而是类似南瓜的表面,而且这种南瓜皮样的视界也有内外两层,中间夹着单向区。此外克尔黑洞比RN黑洞还多出两个界面——外静止面和内静止面——分别位于外视界之外和内视界之内。从静止面到视界的区域被称为能层,这个名称的由来是彭罗斯发现从这个区域可以获取能量。克尔黑洞最有意思的部分是中心不再存在奇点,取而代之的是一个奇环。

克尔黑洞所展现的结构,基本已经达到了复杂程度的极限,再带上电荷的克尔-纽曼黑洞,并没有比克尔黑洞的结构复杂更多,仍然是内外两个能层夹着单向区的样子,中间也依然是代表时空奇异性的奇环。电荷的多少只是为这些结构的具体位置又多增加了一个参数而已。
史瓦西度规