我们对比了 4 种公认的层级多粒度分类方法:HMC-LMLP[1] 、HMCN[2]、Chang et al.[3]、C-HMCNN[4]。我们汇总平均在各个数据集、不同重标记比例下各个对比方法的 OA / 结果在表 4 中:
表 4: 在各个数据集、不同重标记比例下对比方法的平均 OA / 结果
类似地,我们利用 Grad-Cam 算法展示各个对比方法在不同层级上的二维激活热力图,结果见图 5:
图 5: CUB-200-2011 数据集中来自同一目 (order: Passeriformes) 同一科 (family: Troglodytidae) 下面两种种类(左边: House Wren,右边: Marsh Wren) 的鸟类图片上,不同对比方法在三层层级 上各自的感兴趣响应区域示例
参考文献
[1]Ricardo Cerri, et al. Reduction strategies for hierarchical multi-label classification in protein function prediction. BMC Bioinformat., 17(1):373, 2016.
[2]Jonatas Wehrmann, Ricardo Cerri, and Rodrigo Barros. Hierarchical multi-label classification networks. ICML, 2018.
[3]Dongliang Chang, et al. Your” flamingo” is my” bird”: Fine-grained, or not. CVPR, 2021.
Eleonora Giunchiglia and Thomas Lukasiewicz. Coherent hierarchical multi-label classification networks. NeurIPS, 2020.