射电天文学家们开始思考,如果将低频射电观测设备放置在月球的背面进行工作,是否能依靠月球巨大的体积,阻挡来自地球的低频射电干扰,获得更加优质的工作环境呢?
20世纪中期开始,利用射电望远镜进行空间天文观测成为持续热点。1968年和1973年分别发射的两个射电天文探测器RAE-1和RAE-2,专门用于0.02~13.1 MHz 低频射电观测。[1]
通过分析这两颗卫星的观测数据,人们确认了“月球能够有效屏蔽来自地球的射电信号干扰,月球背面是太阳系中近乎最安静的低频射电观测场所,是开展低频射电信号观测的最佳选择”这一重要结论。[2]
从此,“去月球背面设置低频射电观测站”就成为了天文学家们的目标。
嫦娥四号,带三套设备去月背
作为人类首次进行月球背面着陆的探测任务——嫦娥四号当然不会放过这个携带低频射电观测设备开展低频射电天文研究的机会。
而且还带了三套。
这三套观测设备所能观测的频率范围覆盖了0.1-80MHz,分别在地月拉格朗日L2点、月背表面和绕月轨道上进行观测。
1. 地月拉格朗日L2点的中-荷低频射电探测仪
为了实现人造探测器首次着陆月球背面,首先就要解决地球与处于月背的探测器的通信问题。月球“潮汐锁定”的状态虽然为低频射电观测提供了天然的观测条件,但也阻碍了处于月球背面的探测器与地球之间的通信信号。为了使地球与处于月球背面的探测器之间能进行高效的通信,嫦娥四号任务的第一枚运载火箭携带着“鹊桥”中继卫星奔向月球。
大量的科普文章已经介绍过“鹊桥”的作用,它处于地月拉格朗日L2的晕轮轨道上,同时能与地球和处于月背的探测器进行通信,作为通信中继,构建了地球与月背探测器们的通信链路。
但搭载在“鹊桥”中继星上的“中-荷低频射电探测仪(The Netherlands-China Low-Frequency Explorer,NCLE)”可能就不那么出名了。这台搭载在“鹊桥”中继星上的国际合作有效载荷,目标观测频段为0.1MHz-80MHz,利用地月拉格朗日L2点附近的独特优势,既可以收到高红移的21cm线的信号,又可以对太阳及太阳系内行星(包括地球)的射电辐射进行研究,还能对地月拉格朗日L2点的射电背景强度进行测量。
2. 月球背面的着陆器低频射电频谱仪
与搭载在“鹊桥”中继星上的低频射电探测仪不同,着陆器低频射电频谱仪上有四根天线。
明明三根天线就已经可以探测到足够的信息,那为什么还需要一根20cm的短天线呢?