还原性的大气允许甲烷、氢气、氨气等含氢化合物的累积,通过自然界的放电反应,它们能够合成有机大分子,这些分子在低温大气环境中更加稳定,也更适合碳氢化合物的保存。
另一个著名的猜想是RNA世界假说。RNA世界假说是基于RNA既可以作为遗传物质,又能作为核酶,靠自我复制就能不断扩增、代谢并存留的特点。但是,由于RNA的寿命很短,且酶功能有限,才逐渐演化为更加稳定的DNA遗传物质-蛋白质酶体系。目前已知RNA仅在病毒和类病毒中作为遗传物质存在。不过,RNA在高温环境下稳定性较低,所以与还原大气假说一样,该假说同样支持一个相对低温的环境。
![](http://imgq8.q578.com/ef/1115/74491b6b62bd391d.jpg)
想象中的RNA世界。来源/scripps
除生物低温起源假说之外,高温起源也是生命起源的研究热点。
地球的深海热液系统包含生命基本元素、必要的热能量和电化学体系,而被认为是孕育地球生命的潜在温床。大陆的地热场也可能是生命的起源之地。地热系统中的水体在蒸发过程中有可能富集生命基础分子或其前体,从而加速前生命物质之间的组装。另外,太阳光也能够成为生命的能量来源,从大气中通过光化学反应产生的盐分和有机物则能够成为生命的营养来源。
![](http://imgq8.q578.com/ef/1115/724aa0446c7711c9.jpg)
核糖体进化模型。来源/wiki
/ 外源型起源假说
天体生物学先驱卡尔·萨根提出,虽然地外的生命形式很可能与地球的截然不同,但是人类无法脱离所熟知的碳基生命来探测地外,因为一个矿石可能放在其它星球上就能成为生命,但在地球上,我们依然无法将其划归为生命。因此,我们无法脱离人类认知基础,而去盲目相信天马行空的猜测。直到现在,卡尔·萨根的逻辑依然不过时。
地外天体也可能是生命有机分子的重要来源。太阳系的碳质球粒陨石中发现过一些纳米级有机分子球粒,通过对其中氢同位素的检测,认为它们(包括较复杂的氨基酸)应该形成于太阳系诞生前的星云时期。所以,即使早期地球剧烈的火山和地壳活动破坏掉了原有的有机物,太阳系中的小天体也能携带这些物质抵达地球,从而满足生命发生的物质条件。
![](http://imgq8.q578.com/ef/1115/2fd4d7998c665e98.jpg)
南极陨石ALH84001以及其中的细长磁铁矿晶颗粒。
在可能含有冰的小天体中,放射性同位素的衰变可以导致温度升高并产生液态水。同时,研究发现宇宙射线和紫外辐射可以诱导合成复杂有机物,包括氨基酸、核酸碱基、糖类和难降解有机质等。近日,日本团队在小行星“龙宫”上采集样品中发现存在多种氨基酸,也证实了小天体确有形成和携带复杂有机物来完成行星间传输的能力。
/ 我们从哪里来?
地球生命现象的发生是无数宇宙事件中的奇迹之一。生命究竟何时产生?地球是否是唯一拥有生命的星球?这些都是人类探索宇宙的永恒话题。
![](http://imgq8.q578.com/ef/1115/a10a2df64b8081de.jpg)
如果换一种可能,地球生命可能是另外一种景象。来源/wiki
目前认为,地球生命的形成是在相对较短的时间内发生的,由前生命过程将生命一步一步构建起来。在经历了可携带遗传信息的生化分子的筛选、具有酶学功能和信息传导的生化分子的挑选、各种代谢链的建立、代谢网络的完善、代谢过程的区室化等一系列步骤后,最终形成了我们现在所熟悉的以细胞为基础的生命形态。在此过程中,生命所依赖的有机物可能来源于还原性大气、地球热液系统、地外天体输入等,而生物必需分子的同手性特征通过自催化反应产生后,可以被生命祖先有效利用于繁衍和代谢活动。
尽管地球最早的生命无法被直接认知,但是科学家可以通过化石、同位素、有机分子、分子钟等方法探究和刻画生命最早出现的时间和特点,从而一步步揭开地球生命起源和演化的神秘面纱。
——本文节选自《中国国家天文》9月刊
作者简介 /
申建勋,中国科学院地质与地球物理研究所博士后,研究方向为类火星环境中生命信号的探测以及前生命化学体系中分子特征的分析。