交通、家庭和制造业的电气化,由于滞后损失,导致能源消耗增加。因此,降低矫顽力是至关重要的,它可以衡量这些损失。然而,仅仅实现这一目标是不够的:电机中的微型微结构元件必须承受严重的机械负载;也就是说,合金需要高强度和延展性。
在此,我们介绍一种克服此类困境的方法。我们设计了一种Fe-Co-Ni-Ta-Al多元合金(MCA),它具有铁磁基体和顺磁性相干纳米颗粒(尺寸约为 91nm,体积分数约为 55%)。它们阻碍位错运动,增加强度和延展性。它们的小尺寸、低相干应力和小静磁能在磁畴壁宽度以下产生相互作用体积,导致畴壁钉扎最小化,从而保持软磁性。
这种合金在54%的拉伸伸长率下抗拉强度为1336 MPa,矫顽力为78 Am 1(小于1 Oe),饱和磁化强度为100 A m2 kg 1,电阻率为103 μΩ cm。
Abstract:
The electrification of transport, households and manufacturing leads to an increase in energy consumption owing to hysteresis losses. Therefore, minimizing coercivity, which scales these losses, is crucial. Yet meeting this target alone is not enough: SMMs in electrical engines must withstand severe mechanical loads; that is, the alloys need high strength and ductility. Here we introduce an approach to overcome this dilemma. We have designed a Fe–Co–Ni–Ta–Al multicomponent alloy (MCA) with ferromagnetic matrix and paramagnetic coherent nanoparticles (about 91 nm in size and around 55% volume fraction). They impede dislocation motion, enhancing strength and ductility. Their small size, low coherency stress and small magnetostatic energy create an interaction volume below the magnetic domain wall width, leading to minimal domain wall pinning, thus maintaining the soft magnetic properties. The alloy has a tensile strength of 1,336 MPa at 54% tensile elongation, extremely low coercivity of 78 Am 1 (less than 1 Oe), moderate saturation magnetization of 100 A m2 kg 1 and high electrical resistivity of 103 μΩ cm.
物理学Physics
Self-emergence of robust solitons in a microcavity
微腔中鲁棒孤子的自出现
作者:Maxwell Rowley, Pierre-Henry Hanzard, Antonio Cutrona et al.
链接:
https://www.nature.com/articles/s41586-022-04957-x
摘要:
在此,我们展示了自由运行的微谐振滤波器光纤激光器的慢非线性可以将时间腔孤子转化为系统的主要吸引子。这一现象导致了微腔孤子可靠的自启动振荡,对扰动具有天然的鲁棒性,即使在完全中断后也能自动恢复。
这些情况可在球形系统参数空间的的大区域中重复且可控地出现,在这个区域中,可以实现特定状态的长期高度稳定。
Abstract:
Here we show that the slow non-linearities of a free-running microresonator-filtered fibre laser can transform temporal cavity solitons into the system’s dominant attractor. This phenomenon leads to reliable self-starting oscillation of microcavity solitons that are naturally robust to perturbations, recovering spontaneously even after complete disruption. These emerge repeatably and controllably into a large region of the global system parameter space in which specific states, highly stable over long timeframes, can be achieved.