文/观察未来科技
基因就是生物体的密码,基因里藏着生物绝大部分遗传信息,人类自发现基因之日起,就希望能够破解它的秘密。而基因测序就是要测定未知的序列,确定重组基因的方向与结构,对突变进行定位和鉴定比较的研究。
近几年,基因检测日益火热。如果在百度上搜索“基因检测”,我们会得到近380万个问题,其中很大一部分都是在咨询“基因检测的意义有多大?”“基因检测真的有用吗?”“基因检测需要多少钱?”尤其是在精准医疗的风潮下,遗传基因检测更是被越来越多的人提及并关注。
从血型检测到基因检测
最古老的基因检测,其实就是20世纪初的“血型检测”。自1901年发现血型之后,血型检测就在医学和最初的犯罪现场调查中广泛应用开来。同时,由于父母的血型能够在一定程度上限制了子女血型的可能性,血型检验在一定程度上也能够用来鉴定血缘关系。
不过,相较于血型检测,基因检测则复杂的多。要知道,基因是控制遗传性状的基本单位,而基因检测其实就是“遗传检测”,基因检测往往包括染色体结构、DNA拷贝数、DNA变异位点以及基因表达丰度等内容。
第一代基因测序技术诞生于1977年,是由美国生物化学家A.M.Maxam和W.Gilbert发明的化学降解法。这种方法仅从化学领域触发,科学家将一个DNA片段的5端磷酸基作放射性标记,再分别采用不同的化学方法修饰和裂解特定碱基,从而产生一系列长度不一而5端被标记的DNA片段。然后再通过凝胶电泳分离,经放射线自显影,确定各片段末端碱基,从而得出目的基因的碱基序列。
同年,英国生物化学家Frederick Sanger发明了双脱氧末端终止法,即至今广泛应用的Sanger测序法。应用这一技术,科学家完成了首次的人类全基因的测序工作。Sanger测序法是用双脱氧核苷酸作为链终止试剂,通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。
以该法为基础,Sanger后来对它进行了许多改进,使之更适合实际操作,这为后来的大规模测序提供了技术支持。其中一个重要改进是利用单链DNA噬菌体载体将随机打断的DNA片断分别测序,再拼成完整的基因。
20世纪90年代初出现的荧光自动测序技术逐步代替了双脱氧末端终止法,这是一种通过使用四种不同的荧光试剂来标记四种双脱氧核苷酸进行DNA测的方法,它的出现将DNA测序技术带入了自动化测序时代。
总的说来,第一代测序技术的主要特点是测序读长可达1000bp,准确性高达99.999%,但其测序成本高、通量低等方面的缺点,严重影响了其真正大规模的应用。因而第一代测序技术并不是最理想的测序方法。
经过不断的技术开发和改进,以Roche公司的454技术,Illumina公司的Solexa、Hiseq技术,以及ABI公司的Solid技术为标志的第二代测序技术诞生了。
这种测序技术是在Sanger等测序方法的基础上,通过用不同颜色的荧光标记四种不同的dNTPp,当DNA聚合酶合成互补链时,每添加一种dNTPp就会释放出不同的荧光,根据捕捉的荧光信号,经过特定的计算机软件处理,而获得待测的DNA序列信息。
第二代测序技术大大降低了测序成本,同时,还大幅提高了测序速度,并且保持了高准确性。以前完成一个人类基因组的测序需要3年,而使用二代测序技术则仅仅需要1周,但在序列读长方面比起第一代测序技术则要短很多。
显然,人类基因工程是一个非常成功的工程。如今,我们不仅得到了整个人类的基因序列,而且在经过基因测序长达10年发展后的今天,每次基因测序的费用已经从几百亿美元下降到几千美元。几年之后,像Illumina这样的公司承诺在一小时内就可以完成基因测序,而且只收费100美元。
迎来精准医疗时代
基因检测最大的影响,就是在精准医疗的应用。
由于基因在人体中的重要作用,使得我们可以通过基因检测来更加有效的管理健康和更有针对性地进行疾病诊疗。基因检测可以为受检者、医疗人员和研究人员评估一些与基因相关的疾病、体质或者个人特质提供依据。