方框3:人工维度中的跳跃
2015年,LENS(欧洲非线性光谱实验室)和佛罗伦萨大学的 Leonardo Fallani 和 Massimo Inguscio 课题组以及联合量子研究所和马里兰大学帕克分校的 Ian Spielman 课题组都实现了一个二维量子霍尔系统,包含一个真实空间维度和一个三原子自旋态的人工维度,[17,18]与图5相似。如图6所示,这些系统表现出霍尔物理的关键特征:沿系统边缘跳跃的轨道,类似于带电粒子在磁场中的轨道,如方框1所解释的那样。

图6. 二维量子霍尔系统,包含一个真实空间维度和一个三原子自旋态的人工维度。
自2015年以来,人工维度领域得到了极大的扩展。一个突出的创新是将冷原子中的自旋态换成原子动量态。动量态可以通过如下方式耦合成一个人工维度:脉冲驻波光,光波会移动原子,沿着波的方向量子化地改变它们的动量。[5]英国剑桥大学的 Ulrich Schneider 课题组最近将这种方法扩展到四束独立的驻波光,每束光都指向二维平面的不同方向。[11]这一进展同时创造了多达四个人工维度。[11]虽然还没有拓扑效应,但实验结果可以用原子在四维超立方晶格上跳跃来解释,如图5所示,该晶格由动量态组成。
近年来,光子学在人工维度方面也取得了重大发展。最值得注意的是两种方案:一种是由环形腔的频率模式形成的人工维度,另一种是由波导阵列的晶格模式形成的人工维度。斯坦福大学的Shanhui Fan和他的同事展示了基于单光子腔的频率模式的两个同时独立的人工维度。[12]海法以色列理工学院的Mordechai Segev小组提出并进行了基于晶格模式的实验,该实验已经揭示了具有人工维度的二维和三维拓扑边缘物理。这两种方法将来都有可能实现四维拓扑绝缘体。
五、开启更高维度
尽管过去几年取得了如此多的进展,模拟四维物理的实验仍处于早期阶段。拓扑泵已经成功地运用数学技巧来观察四维效应的特征,但不能完全刻画四维动力学。电路可以刻画四维拓扑晶格的全部连接,但尚未提供对四维物理的完全实现。在未来,所有这些限制将有望被人工维度所克服,在人工维度中,粒子或许能够像在四维空间中一样移动。
人工维度也可能揭示了思考三维世界的新方法。毕竟,一个人工维度是由现有的物理自由度耦合而成。例如,创建一个光频模式的人工维度涉及到控制光的频率,而在这样的设置中寻找拓扑边缘电流,则与确定一种新的机制来鲁棒地输送光或转换光的频率有关。长远来看,通过为理解和设计复杂系统提供另一种观点,人工维度可能会在光频隔离器或光的光谱操纵方面得到应用。[5,12]
就基础科学而言,还有很多四维物理有待探索。本文的主题都是单粒子物理学,即粒子与粒子之间的相互作用可以忽略不计。在理论上理解四维现象只需少数几步,例如张首晟和胡江平提出的将二维分数量子霍尔效应推广到四维的建议[3]。了解在更高维度上可能出现的多体物理,以及这些现象是否可以用目前的实验技巧来实现,需要进一步的工作。