例如,如果每行的节点都是首位相连地排列,则图4中的二维方晶格可以转化为一维链。只要节点之间存在相同类型的连接,该系统就会遵守与之前相同的数学方程。在某种意义上,这个过程将二维模型嵌入到一维系统中——尽管是一个奇怪的一维系统,其中一些短程连接缺失,而其他长程连接出现。
同样的想法也可以延伸到更高维的格点上——例如,用三维或二维系统创建一个四维格点模型。因此,嵌入技巧提供了一个在真实的物理系统中实现四维晶格模型的诀窍,但却面临着调控节点之间复杂连接的挑战。
在2013年的一个早期方案中,克罗地亚萨格勒布大学的 Dario Jukić 和 Hrvoje Buljan 设想用光子波导模拟一个离散的四维晶格。[8]从那时起,研究兴趣就集中在更灵活的系统上,如电路,以及如何将由电感、电容和电阻组成的格点连在一起,实现四维拓扑模型的各种方案。
2020年,我和新加坡南洋理工大学的 You Wang、Baile Zhang、Yidong Chong首次在实验中应用了该方法,如图4所示。我们创建了一个小型的四维拓扑晶格,包含144个嵌入电路的格点。在实验中,我们设计了一叠三维电路板,并将它们连在一起,以匹配四维量子霍尔效应的四维离散晶格模型。正如对四维拓扑绝缘体的预测,我们观察到电流流经四维拓扑绝缘体表面的格点,但没有流经块体内部。
这些电路实验确实有局限性,因为它们通常不能同时获得态的整个能谱。它们也是经典的系统,不能表现出量子效应。尽管如此,制造电路的简单性和灵活性使它们成为探索四维物理学的一条富有成效的途径。
方法3:人工维度
最后一招——人工维度——最接近于真正模拟在四维运动的粒子。该方法将系统的一些内部状态或内在属性解释为沿着一个假想的额外维度的格点。[5]通过将该策略与其他真实或人工维度相结合,它有可能实现高维晶格模型。
为了了解这个方案是如何运作的,我们考虑一个被囚禁在真空室中并被冷却到接近绝对零度的全同原子气体的例子。每个原子都有各种可能的内部原子自旋态,它们对应于组成它的电子和原子核的不同构型。如图5所示,将合适的激光照射到原子上,可以刺激它们在这些内部状态之间按一定次序转换。随着这些转换的发生,原子的自旋态标记会逐步改变,类似于粒子在格点之间跳跃时离散空间坐标的变化。这个类比强大而有效,它将不同的自旋态重组以张成一个人工维度。

图5. 人工维度将原子自旋态或其他内部状态或内在属性变成类似于空间维度的东西。
一个二维离散晶格模型(左)包括一个真实空间维度和一个由原子自旋态组成的人工维度。沿着真实维度的跳跃(实线)对应于真实的原子运动,而沿着人工维度的跳跃(虚线)对应于激光诱导的自旋态之间的转换。四维超立方晶格的单胞(右)是一个超立方体。这种形状可以用真实和人工空间维度的适当组合来制作。
原子自旋态的人工维度的想法起源于2012年西班牙巴塞罗那大学的 Octavi Boada 和 José Ignacio Latorre 以及巴塞罗那光子科学研究所的 Alessio Celi 和 Maciej Lewenstein 的工作。[10]三年后,同样的想法被扩展到离散二维量子霍尔效应晶格模型,包括一个真实维度和一个人工维度,在冷原子实验中实现,如方框3所示。在未来,该方法可能被进一步推动,以实现四维拓扑模型。