最近,在2020年,类似的实验方法已经模拟了所谓的四维张量单极子(tensor monopole),它被假设为张量规范场的来源,其特征是一种称为 Dixmier-Douady 不变量的奇异拓扑数[14]。
四维量子霍尔效应并不是故事的终点。在过去20年里,其他的量子霍尔效应已经在六维和八维系统中被预测,许多其他的二维和三维拓扑绝缘体也已经被发现,它们需要除陈数之外的拓扑不变量。[1] 将物质的拓扑相划分为任意空间维数的数学分类也表明,其他更高维度的现象正等待被发现。[6]
三、拓扑物理学,不只是电子
尽管二维和三维量子霍尔效应是在固体材料中观察到的,如果要将更高维度的物理学带入实验室,则需要超越固体材料的范畴,考虑其他更可控的平台。
许多拓扑特性虽然最初与电子输运联系起来,现在反而被理解为源于能带理论和普通的波物理学。[5]换句话说,拓扑数,如第一陈数,也适用于超冷原子、经典光波、机械振荡和海洋表面的波,这里只列举一些可能性。
直观上,经典波或无相互作用的玻色子不应该被称为拓扑绝缘体,因为如果没有泡利不相容原理或其他效应来填充能带中的态,这些系统就不会是通常意义上的绝缘体。然而,目前的惯例是,只要物理是从具有良好定义的拓扑数的能带中导出,就使用拓扑绝缘体这个名词。[5]
探测非电子系统的拓扑物理学需要不同的实验方法,因为这些系统不再具有霍尔电导中鲁棒的量子化平台。对于基于波的系统,最重要的实验特征通常是存在局域于系统表面的鲁棒振动模式,处于禁止穿透块体的频率。在这些情况下,对于一个给定的频率,波可以在表面传播,但不能在块体内部传播,如图1所示。这种拓扑保护可能有朝一日对诸如光子学器件在内的应用非常有用,因为它提供了一种方法,可以鲁棒地引导光绕过在器件制造过程中引入的任何无序和缺陷。[5]
向非电子平台的扩展也有利于对拓扑现象的研究。其中许多平台比真实的材料更容易调控,因此使科学家们能够在目前固体物理学可研究的范围之外进行探索。[5]作为推动工作的一部分,研究人员已经发展了模拟额外维度的实验技巧,部分原因是为了探测高维拓扑绝缘体。三个主要的方法是拓扑泵(topological pumping)、连接(connectivity)和人工维度(synthetic dimensions),尽管其他方案也在开发中。
四、探测高维拓扑绝缘体的方法
方法1:拓扑泵
最早但也许是最抽象的模仿高维度的技巧之一是拓扑泵