物理学的杰作?埋藏在无人光顾的气象学文献里对吗 物理学的杰作?埋藏在无人光顾的气象学文献里什么意思 气象物理学家 物理学家
洛伦茨选取了一组描述对流的方程,并极力简化,舍弃一切有可能出错的东西,使之简单到脱离现实。原始模型几乎一点儿影子都没有剩下,但他的确将非线性保留了下来。在物理学家的眼中,这些方程看上去甚是简单。你会扫上一眼 (后来的许多科学家确实就是如此) ,然后说:“我能够求解它。”
“确实,”洛伦茨平静地说道,“当你看到它们时,你会倾向于这样想。它们当中存在一些非线性的项,但你认为必定存在某种方式可以绕过它们。但你就是无法做到。”
最简单的教科书式对流出现在一个充满流体的盒子中,盒子的一个平滑底面可被加热,而另一个平滑顶面可被冷却。热的底部与冷的顶部之间的温差控制着流体流的运动。如果温差很小,那么整个系统保持静止。这时热量通过热传导从底部流向顶部,就仿佛流经一块金属,不足以克服流体宏观上维持不动的自然倾向。此外,整个系统是稳定的。任何随机运动 (比如一个研究生敲击实验设备所引发的) 会慢慢消失,使系统回归其定态。
翻滚的流体:当一种液体或气体在底部受热时,该流体倾向于自组织形成一个个圆柱状的涡卷(左图)。热流体在一边上升,逐渐失去热量,然后在另一边下沉——这就是对流过程。进一步加热后(右图),一种不稳定性开始出现,涡卷开始沿着圆柱体的长轴前后摆动。在更高的温度上,流体流变得恣意和紊乱。
但增大加热强度,新的一类行为就会出现。随着底部的流体受热,它体积膨胀。随着它体积膨胀,它密度变小。而随着它密度变小,它相对变轻,足以克服摩擦力,从而上升至顶部。在一个小心设计过的盒子中,圆柱状的涡卷会出现,其中一边是热流体受热上升,另一边则是冷流体下沉补充。从侧面看,整个运动构成了一个连续的圆。而在实验室之外,大自然也经常创造出它自己的对流涡胞。比如,当太阳加热沙漠的地表时,翻滚的气流会在上面的积云或下面的沙堆中创造出神秘莫测的模式。
进一步增大加热强度,流体的行为会变得更为复杂。涡卷会开始扭曲、摆动。洛伦茨的方程组太过简化,完全不足以为这类复杂性建模。它们所抽象的只是现实世界对流的一个特征:热流体上升而冷流体下沉、翻滚仿似摩天轮的圆周运动。这些方程考虑了这种运动的速度以及热量的传递,而这些物理过程是相互作用的。随着热流体沿着圆上升,它会与其他较冷的部分相接触,从而开始失去热量。如果运动的速度足够快,那么底部流体在抵达顶部并开始顺着涡卷的另一边下沉时不会失去所有的额外热量,所以它实际上会开始阻碍处在身后的其他热流体的运动。
尽管洛伦茨的系统没有为对流完全建模,但事实证明,它还是能在现实系统中找到一些确切的对应物。比如,他的方程组就精确描述了一种老式发电机。作为现代发电机的祖先,圆盘发电机通过圆盘在磁场中转动而生成电流。在特定条件下,一种双圆盘发电机能够反转线路中的电流。在洛伦茨的方程组变得为更多人所知后,有些科学家就提出,这样一种发电机的行为或许可以解释另一种怪异的反转现象:地磁场。人们已经知道,在地球的历史上,这种“地磁发电机”已经反转过很多次,并且这些反转之间的间隔看上去毫无规则、难以解释。面对这样的不规则性,理论研究者通常试图在系统之外寻找解释,提出诸如陨石撞击之类的理由。但或许地磁发电机自有其混沌。
另一个可被洛伦茨的方程组精确描述的系统是某种水车,这是对流的圆周运动的一个力学类比。在顶部,水匀速流入挂在水车边缘的水斗中。每个水斗则透过底下的一个小孔匀速将水漏出。如果水流缓慢,那么最高处的水斗将永远无法积累足够多的水,不足以克服摩擦力;但如果水流变快,最高处的水斗的重量将带动水车开始转动。转动可能持续朝同一个方向。或者如果水流如此之快,以至于重的水斗越过最低点来到另一边,于是整个水车可能变慢、停止,然后反向转动,一下朝一个方向,一下朝另一个方向。
面对这样一个简单的力学系统,物理学家的直觉 (其前混沌的直觉) 会告诉他,长期来看,如果水流保持匀速,一个定态就将会演化出来。要么水车匀速转动,要么它稳定地来回振荡,以恒定的间隔一下朝一个方向,一下朝另一个方向。但洛伦茨发现情况并非如此。