![](http://imgq8.q578.com/ef/0922/55a4cb07c20133f2.jpg)
图 北极。(来源:Pixabay)
作为大型单机器人系统的替代方法,小型移动机器人团队具备更大的灵活性和可扩展性,可以构建比单个机器人本身更大的几何形状,同时具有在多个建筑点高效、并行地自适应分布的潜力。
然而,使用机器人团队进行建筑的研究还处于发展的早期探索阶段,当前主要集中在建筑构件的组装上。
此外,目前的多机器人增材制造方法主要使用移动地面机器人车辆,操作高度有限。而且这些移动系统同样受平台规模、最大建筑围护结构、并行制造能力和可访问性等诸多因素的限制。
但是,与目前的人工机器人系统相比,自然界中的“建筑师”(比如蜜蜂、白蚁和家燕等)却可以在飞行中建造巢穴,表现得非常灵活。
![](http://imgq8.q578.com/ef/0922/95fed37b1ce06f87.jpg)
(来源:Pixabay)
例如,一只燕子为搭建自己的巢穴,可以克服自身有限的载荷能力,在建筑材料来源处和未来巢穴点之间往返 1200 次;而白蚁、黄蜂等群居昆虫,则表现出了更强的适应性和灵活性。
特别是,由蜂群完成的空中建造展示了高效和直接的路径优化,在整个建造过程中降低了对先前建筑结构的依赖和限制。
特别是,由蜂群完成的空中建造展示了高效和直接的路径优化,在建造过程中降低了对先前建筑结构的依赖和限制。
受这些自然系统的启发,Kovac 团队及其合作者提出了一种名为“空中增材制造(Aerial-AM)”的集体建造新方法,使用不受束缚的移动机器人网络作为一个多主体系统来运行。
相比于传统方法,Aerial-AM(下图虚线框内)可以在人类难以到达的地点以不受区域限制的方式进行并行制造。
![](http://imgq8.q578.com/ef/0922/5f61064356be7201.jpg)
图 不同增材制造机器人平台的比较,红色向蓝色的渐变表示建造规模、灵活性和可访问性的改进(来源:论文)
无人机群根据预设程序系统工作,在飞行中完成建造任务。它们在飞行时是完全自主的,但受人类控制者监控。控制者根据无人机提供的信息检查建造进度,并在必要时进行干预。
29分钟,2.05米高
据论文描述,Aerial-AM 使用 3D 打印技术和路径规划框架来帮助无人机在建造过程中适应结构的几何变化。
无人机使用泡沫和水泥样材料建造了概念验证的圆柱体,在整个建造过程中,实时评估打印的几何图形,并调整其行为,以确保符合制造规格,建造精度达到了 5 毫米(在英国建筑要求中是可接受的)。
![](http://imgq8.q578.com/ef/0922/3bbaa8ca978b6951.jpg)
![](http://imgq8.q578.com/ef/0922/89841db955f7ee1c.jpg)
图 利用 Aerial-AM 方法的增量制造原理,可以通过部署多个 BuilDrone 来建造更大的结构。