其中,概念验证圆柱体包括一个使用聚氨酯泡沫材料 3D 打印出的 2.05 米高圆柱体(72 层),以及一个使用定制设计的结构胶凝材料建造的 18 厘米高圆柱体(28 层)。
![](http://imgq8.q578.com/ef/0922/eeb2e88d73696d6e.jpg)
图 无人机 ScanDrone、BuilDrone 和 3D 打印的泡沫结构,BuilDrone 打印 1 层需要 24 秒,打印 72 层共计耗费 29 分钟
作为一种自主的、可扩展的、灵活的增材制造方法,Aerial-AM 可适应几何类型、规模和机器人数量的变化。
使用 BuilDrone 进行材料沉积,使用 ScanDrone 对打印结构进行环内定性评估,对 2.05 米高的高圆筒进行打印,证明了 Aerial-AM 方法制造大尺寸几何图形的能力。
此外,其他制造试验证明,Aerial-AM 具有精度高(5 毫米位置误差)、并行能力强等特点,可以有效地打印各种几何结构。
虽然这些实验成功验证了 Aerial-AM 的可行性,但它们只是探索使用空中机器人进行建筑的潜力的第一步。
要想使用此次研究提出的方法实现建筑几何结构的全面制造,需要机器人技术和材料科学方面取得重大进展。特别是,支撑材料的沉积、活性材料的固化以及多机器人之间的任务共享,有待进一步取得突破。
![](http://imgq8.q578.com/ef/0922/8fbec69a13e72cd0.jpg)
图 森林建造概念图。(来源:研究团队)
同时,结构有效的几何结构的设计和工程,以及打印几何结构行为的系统分析,仍然需要进一步的研究。
为了使研究成果走出实验室,研究团队计划在未来为 Aerial-AM 增加一个多传感器同步定位和测绘(SLAM)系统与差分全球定位系统(GPS),从而提供一个高精度的户外定位服务。
同时,建筑规模的增大需要材料和电池补给在未来实现自动化;也需要新的分析方法,来进一步评估分布式制造相对于制造对象的规模和所使用的机器人平台的效率。
尽管如此,该研究提出的系统实现了自动 Aerial-AM 的概念验证,并可能会为使用集体多机器人增材制造系统完成建造提供基础。
未来,Aerial-AM 或将成为支撑偏远地区住房和重要基础设施建设的替代手段。在这些地区,全球变暖、自然灾害和恶劣气候频发,使得现有建筑方法遭遇了前所未有的挑战。
在接下来的工作中,为进一步验证这一解决方案,研究团队将与建筑公司合作,继续探索这一方案的建造和修复能力。
最后,一起欣赏下这些“建筑师”们的劳动成果吧。
![](http://imgq8.q578.com/ef/0922/14fc38bc65b37b73.jpg)
论文链接: