多业务同步成长及拓展,打造平台化目标。复盘全球化学平台型龙头信越化学的成长, 信越化学自始至终都坚持多元发展、产品/销售/发展三位一体、以及使用最核心的技术 实现上下游全链条打通的战略进行发展及成长。而彤程新材当前也实现了三大业务的并 驾齐驱,且与信越化学样坚持上下游整合,基于同源技术的横纵拓展,以及有产品终端 向上反溯的基因,因此我们认为彤程新材同样有望成为中国内的大型平台型厂商。
十一、CMP:突破重围,国产化启动
CMP 化学机械抛光(Chemical Mechanical Polishing)工艺是半导体制造过程中的关键 流程之一,利用了磨损中的“软磨硬”原理,即用较软的材料来进行抛光以实现高质量 的表面抛光。通过化学的和机械的综合作用,从而避免了由单纯机械抛光造成的表面损 伤和由单纯化学抛光易造成的抛光速度慢、表面平整度和抛光一致性差等缺点。
![](http://imgq8.q578.com/ef/0625/dfd85578a410d52e.jpg)
化学机械抛光采用将机械摩擦和化学腐蚀相结合的工艺: 化学腐蚀 – 抛光液:首先是介于工件表面和抛光垫之间的抛光液中的氧化剂、催化剂 等于工件表面材料进行化学反应,在工件表面产生一层化学反应薄膜; 机械摩擦 – 抛光垫:然后由抛光液中的磨粒和由高分子材料制成的抛光垫通过机械作 用将这一层化学反应薄膜去除,使工件表面重新裸露出来,然后再进行化学反应。 整个过程是化学作用与机械作用的交替进行,最终完成对工件表面的抛光,速率慢者控制抛光的速率。
CMP包括三道抛光工序,主要运用到的材料包括抛光垫、抛光液、蜡、陶瓷片等。不同 工序根据目的的不同,分别需要不同的抛光压力、抛光液组分、pH 值、抛光垫材质、 结构及硬度等。CMP 抛光液和 CMP 抛光垫是 CMP 工艺的核心要素,二者的性质影响 着表面抛光质量。而在 CMP 环节之中,也存在着各式不同的类别,例如钨/铜及其阻挡 层、铝、STI、ILD 等。 集成电路工艺技术的每一次精进,都伴随着 CMP 技术的不断深入。随着摩尔定律的延 续,当制造工艺不断向先进制程节点发展时对 CMP 技术的要求相应提高、步骤也会不 断增加,CMP 设备首先应用于 1988 年 IBM 公司 4M DRAM 芯片的制造,此后随器件特 征尺寸(CD)微细化、多层布线和新型材料出现,CMP 技术的重要性不断凸显,首先 用于后道工艺金属间绝缘介质(IMD)层的平坦化,之后用于金属钩(W)的平坦化, 近年来又用于浅沟槽隔离(STI)和铜(Cu)的平坦化。 STI(Shallow Trench Isolation)即浅沟槽隔离层,他的作用主要是用氧化层来隔开各个门 电路(Gate),使各门电路之间互不导通。STI CMP 这就是将晶圆表面的氧化层磨平,最终 正好使 SIN 暴露出来。Oxide CMP包括了 ILD CMP及 IMD CMP,主要是将氧化硅(Oxide) 磨平至一定厚度,实现平坦化。
![](http://imgq8.q578.com/ef/0625/56b095cd071dbf0e.jpg)
研磨材料更加丰富,CMP 需求增加。90 65nm 节点,随着铜互连技术和绝缘材料低 k 介质的广泛采用,CMP 的研磨对象主要是铜互连层、绝缘膜和浅沟槽隔离。28nm 后, 逻辑器件的晶体管中引入高 k 金属栅结构(HKMG),从而推动了虚拟栅开口 CMP 工艺 和替代金属栅 CMP 工艺两种关键平坦化工艺的发展。在 22nm 开始出现的 FinFET 晶体 管增加了虚拟栅平坦化工艺,也是实现后续 3D 结构刻蚀的关键技术。先进制程节点发 展至 7nm 以下时,芯片制造过程中 CMP 的应用在最初的氧化硅 CMP 和钨 CMP 基础上 新增了包含氮化硅 CMP、鳍式多晶硅 CMP、钨金属栅极 CMP 等先进 CMP 技术,所需 的抛光步骤也增加至 30 余步,大幅增加了集成电路制造过程中对 CMP 设备的采购和升 级需求。
根据 TECHCET,全球 CMP 材料市场规模在 2021 年达到超过 30 亿美金,其中抛光垫市 场规模约 11.3 亿美金,抛光液市场规模 14.3 亿美金,预计 CMP 材料市场 2022 年同比 增长 9%至 33 亿美金。
目前市场上抛光垫目前主要被陶氏化学公司所垄断,市场份额达到 90%左右,其他供 应商还包括日本东丽、3M、台湾三方化学、卡博特等公司,合计份额在 10%左右。抛 光液方面,目前主要的供应商包括日本 Fujimi、日本 HinomotoKenmazai,美国卡博特、 杜邦、Rodel、Eka、韩国 ACE 等公司,占据全球 90%以上的市场份额,国内这一市场 主要依赖进口,国内仅有部分企业可以生产,但也体现了国内逐步的技术突破,以及进 口替代市场的巨大。