- 一是来自产品和落地挑战的作用力。
- 二则是不断吸收最前沿创新技术。
比如在城市场景的落地中,就存在着4类场景难题、6大技术挑战。
其中场景难题主要包括“城市道路养护频繁”、“大型车辆密集”、“变道空间狭窄”、“城市环境多样”等。
与之相对应会产生6大技术挑战:
- 如何在自动驾驶领域应用大模型?
- 如何让数据发挥更大的价值?
- 如何使用重感知技术解决现实空间理解问题?
- 如何使用人类世界的交互接口?
- 如何让仿真更真?
- 如何让自动驾驶系统运动起来更像人?
在4大场景6大挑战之下,毫末智行对MANA的感知智能和认知智能都进行了针对性升级调整。
首先,数据标注。通过使用大规模量产车无标注数据的自监督学习方法,可以实现模型效果的有效提升,相比只用少量标注样本训练,训练效果提升3倍以上,可以更高效完成训练,更好适应感知需求。
其次,增量式数据学习方法。针对新增数据,抽取部分训练数据构成混合数据集,而不是新旧数据区别对外的方法,更追求新数据的拟合和新模型对齐旧模型的输出,这样能让整体算力节省80%,响应速度提升6倍,也能避免量产车规模化产生数据后,无法兼顾规模和效率。
第三,重感知轻地图,告别高精度地图依赖。通过用时序的Transformer模型在BEV空间上做了虚拟实时建图,使得感知车道线的输出更加准确和稳定,让城市导航辅助驾驶不必依赖高精度地图——这实际也是更快更低门槛落地城市导航辅助驾驶的必备能力。
第四,车辆信号灯识别。通过车端感知系统升级,对车辆刹车灯、转向灯状态进行专门识别,让驾驶员在处理前车急刹、紧急切入等场景中更安全和舒适。
第五,仿真系统进化。针对城市最复杂场景——路口,在仿真系统中引入高价值的真实交通流场景,与阿里云、德清政府合作,将路口这一城市最复杂场景引入仿真引擎,构建自动驾驶场景库,通过自动驾驶的真实仿真验证,时效性更高、微观交通流更真实,效破解了城市路口通过“老大难”问题。
值得注意的事,这是中国首个基于车路协同云服务的大规模自动驾驶场景库,也是中国第一个使用交通数据生成的自动驾驶场景库,对外发布和应用,也标志着中国自动驾驶来到了新阶段。
最后,拟人化认知。