通过傅里叶变换找到的长笛、双簧管、小提琴的不同泛音。
上面这张图显示的是长笛、双簧管和小提琴的泛音,这些都是通过傅里叶变换计算出来的。从图上可以看出,长笛的泛音较少,所以音色比较纯净;反之小提琴拥有大量泛音,因此它的音色也更加丰富。
因此,傅里叶变换就是一种将函数f(t)变换成另一个函数F(ω)的方法;为傅里叶逆变换则能将F(ω)变回f(t)。
除了声音之外,傅里叶变换在信号和图像处理中也起着非常重要的作用。比如在我们试图通过通信信道传输信息时,往往会出现信息失真的情况;又比如我们给一个物体拍照时,照片就会变得模糊。对于产生这种失真与模糊背后的过程,我们已经了解得十分详尽了。
假设f(t)是通过信道的信号,g(τ)是一个导致信号失真的“模糊”函数,这种模糊是信道的一个性质,那么信道的输出h(t)由可以通过下面这个等式得到:
函数h(t)被称为f(t)与g(τ)的卷积,通常被写作为:
卷积积分是很难直接计算的,而且直接计算需要耗费大量的计算时间。然而,傅里叶变换为这个等式提供了一个简单的表达式:
这个结果被称为卷积定理,这是一个无论你怎样强调它对现代电信的重要性都不过分的等式。它为计算h(t)提供了一个直观有效的方法:先找到f(t)和g(t)的傅里叶变换,将它们相乘,然后通过傅里叶逆变化变换,就能得到h。
此外,如果已知的是接收到的信号h(t),想要找出f(t),那么可以先对h进行傅里叶变换,然后除以g(t)的傅里叶变换,再运用傅里叶逆变换,就能找到f(t)。举例来说,你有一张模糊的照片,函数h(t)代表的是模糊照片的强度水平,那么f(t)则是原始的不模糊的照片的强度水平。因此,通过刚才提到的过程,就能将模糊的照片恢复成清晰的样子。
用傅里叶变化恢复模糊照片的示例。| 图片来源:Chris Budd
不过在实践应用中,我们考虑的因素会比这个简单的方程要多一些,因为h(t)也会受到噪声的影响。但尽管如此,傅里叶变换仍是许多用来消除信号失真的方法的核心。而能够快速地进行傅里叶变化,成为了后来的核磁共振成像、CAT扫描等现代技术发展的前提。可以说,傅里叶变换不仅改变了电信行业,还掀起了一场现代数字革命。
19世纪,法国机械工程师克劳德-路易·纳维(Claude-Louis Navier)和英国数学家乔治·斯托克斯(George Stokes)推导出了一组描述流体的方程,它们被称为纳维-斯托克斯方程方程(NS方程)。在某种程度上,它们被视为是牛顿运动定律的延伸。这组方程看起来或许很复杂,但它们与我们有着千丝万缕的联系,几乎无时无刻地出现在我们生活中,比如天气和气候。